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Abstract. The large scale interferometric gravitational wave detectors consist of Fabry-Perot cavities op-
erating at very high powers ranging from tens of kW to MW for next generations. The high powers may
result in several nonlinear effects which would affect the performance of the detector. In this paper, we
investigate the effects of radiation pressure, which tend to displace the mirrors from their resonant position
resulting in the detuning of the cavity. We observe a remarkable effect, namely, that the freely hanging
mirrors gain energy continuously and swing with increasing amplitude. It is found that the “time delay”,
that is, the time taken for the field to adjust to its instantaneous equilibrium value, when the mirrors are
in motion, is responsible for this effect. This effect is likely to be important in the optimal operation of the
full-scale interferometers such as VIRGO and LIGO.

PACS. 04.80.Nn Gravitational wave detectors and experiments – 42.65.Sf Dynamics of nonlinear
optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal
dynamics – 42.60.Da Resonators, cavities, amplifiers, arrays, and rings

1 Introduction

The general theory of relativity predicts the existence
of gravitational waves. Since gravity couples very weakly
to matter, highly sensitive detectors are required to de-
tect gravitational waves. Over the next decade several
large-scale interferometric gravitational wave detectors
will come on-line. These include the LIGO, composed
of two interferometric detectors situated in the United
States each with baselines of 4 km, VIRGO, an Ital-
ian/French project located near Pisa with a baseline of
3 km, GEO600, a British/German interferometer under
construction near Hannover with a baseline of 600 m,
TAMA in Japan, a medium-scale laser interferometer with
a baseline of 300 m and with funding approval AIGO500,
the proposed 500 m project sponsored by ACIGA [1–5].
The large scale interferometers will use Fabry-Perot cavi-
ties and the ground based detectors will have arm lengths
of few kilometers. There are several noise sources which
plague the detector. Amongst them, the photon shot noise
is dominant at high frequencies. It is reduced by increas-
ing the amount of power of the laser source, as the noise
is inversely proportional to the square root of the power.
Therefore the cavities envisaged will operate with very
high powers in their arms, tens of kilowatts for initial
detectors and perhaps powers as high as megawatts in
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planned advanced detectors. The high power stored in the
cavities can generate a number of nonlinear effects which
would adversely affect the operation of the optical cavity.
Here, we look into one such effect, namely, the dynamics of
mirrors under the radiation pressure force. In earlier liter-
ature, we and others had investigated the thermo-elastic
deformation of the mirrors due to the absorption of the
power in the coatings and performed a longitudinal anal-
ysis of the cavity [6–10]. Following these investigations,
we studied the effects of radiation pressure in the cav-
ity, in the regime when the displacement of the mirror
is small compared with the line-width of the cavity, the
cavity is servoed at resonance with a realistic servo con-
trol and the variation in the radiation pressure force is
linearly dependent on the displacement [11]. The radia-
tion pressure effects have also been investigated in earlier
literature [12–16]. Here, however, since we now have a rea-
sonably good idea about the instrumental parameters to
be used in the large scale detectors, we expect that our
analysis here will be important to the experimentalists.
We assume that the mirrors are hanging “freely” (there is
no active servo control) and the radiation pressure exerts
force on them which displaces them from resonance. It is
very important for people involved in the experiments be-
ing built to have a quantitative idea of the magnitude of
these effects. For instance, it would be necessary to take
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into account these effects and modify the servo transfer
functions to be used for the control of the experiments.

The main result of this paper is to establish that the
freely hanging mirrors continuously gain energy and swing
with ever increasing amplitude when subjected to radia-
tion pressure force arising from the light field. This result
seems to be in opposition with the results of Meystre et al.,
who found in [12] a mirror confinement due to the radia-
tion pressure. The reason for this difference of behaviour
is the “time delay” effect which is also examined in de-
tail in this paper. The time delay is large for the long
(kilometric) cavities, primarily studied here, while it can
be neglected for short cavities such as the one studied by
Meystre et al. [12] and those used in most of labs. Closed
form expressions have been given which facilitate in un-
derstanding the physics of the phenomenon.

The paper is organized as follows: in Section 2, we
set up the equation of motion of the free mirrors. We ex-
amine the motion of the mirrors with the two forces (i)
the radiation pressure force, (ii) the force of gravity. In
Section 3, we numerically integrate the equations of
motion using the so-called “Phase Space Method”. We
present the results for the particular case, when the mir-
rors are in the resonance positions and the laser is switched
on. We observe that the amplitude of the motion of the
mirrors increases with time and energy is pumped into
the system. For very large times, when the amplitude of
the system is also very large, so that the mirrors cross
several of the Fabry-Perot resonances in one cycle of the
pendulum, the motion approximates to that of an anti-
damped harmonic oscillator. We give also, for comparison,
the numerical results obtained for a short cavity: no anti-
damping is exhibited in this case, in agreement with earlier
results [12]. In Section 4, we obtain analytically, under the
quasi-static approximation, the phase space trajectories of
the motion of the individual mirrors as well as the mo-
tion in the differential mode and the common mode (the
centre of mass mode). The analytical results match with
the numerical ones remarkably. In Section 5, we give a
quantitative description of the phenomenon under the as-
sumption that the velocity of the mirror does not change
very much on the time scale of the storage time of the
cavity. We find that the gain in energy is due to a differ-
ential radiation pressure force arising from the asymme-
try, according as the mirrors are approaching each other
or moving away from each other. We obtain approximate
analytical expressions for the differential force, the time
“delay” and then proceed to compute the gain in energy
per cycle when the mirrors encounter a single resonance
or cross several resonances. For large amplitudes, when
the mirrors cross several resonances, the system behaves
like an anti-damped harmonic oscillator. We can then as-
sociate an effective negative Q-factor for the system. We
show that the Q-factor depends on the input power, the
finesse of the cavity and the round trip time of the cav-
ity. Finally in Section 6, we study the behaviour of the
system when it is initially in equilibrium and goes out of
lock. This may happen when the servo loop is suddenly
opened.
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Fig. 1. Schematic diagram
of the cavity and the intra-
cavity fields.

2 Optical and mechanical equations

We consider only “free” mirrors meaning that no servo
control loop is used. The only forces acting on the mirrors
are the radiation pressure force and gravity which man-
ifests itself as the restoring force of the pendulum. We
consider a single cavity with mirrors M1 and M2 which
are suspended as shown in Figure 1. The input beam A
enters the cavity from mirror M1 and bounces back and
forth between the two mirrors. After several round trips,
whose number is of the order of the finesse of the cav-
ity, the field builds up inside the cavity. The magnitude
of the field depends on the finesse of the cavity, the in-
put power and the detuning of the cavity. The field or the
power produces the radiation pressure force which pushes
on the mirrors, driving them apart, thus changing the dis-
tance between the two. This in turn changes the power
inside the cavity. For instance, if the mirrors were hang-
ing in a position of resonance, the radiation pressure force
drives the cavity out of resonance, reducing the radiation
pressure force. The mirrors start swinging with radiation
pressure force adjusting to the continuously varying length
of the cavity. It is found that the radiation pressure force
does not adjust instantaneously to the new length but lags
behind the expected static force given by the Fabry-Perot
curve (the Airy function) by a time-lag comparable to the
storage time of the cavity. The time-lag has been called
“time delay” in earlier literature [14].

The slowly varying amplitude of the field inside the
cavity at time t, denoted by B(t) satisfies the following
equation,

B(t) = t1A exp[ikx1(t)] +RB(t− τ) exp[ikL(t)], (1)

where, xi(t), ri and ti, i = 1, 2 are the positions, reflec-
tivities and transmitivitties of the mirrors M1 and M2 re-
spectively; R = r1r2, k = 2π/λ, where λ is the wavelength
of the laser light, τ is the round trip time and

L(t) = 2x2(t− τ/2)− x1(t)− x1(t− τ). (2)

In case of the VIRGO cavity, the arm length L0 is 3 km,
the round trip time τ = (2L0/c) ∼ 2 × 10−5 seconds,
where c is the speed of light. This equation provides an
iterative relation between the field amplitude at time t to
the field amplitude at time t− τ and the positions of the
mirrors.

We investigate the following two situations:

1. the mirrors are hanging in the positions of resonance
and the laser is switched on at the time t = t0;



A. Pai et al.: Radiation pressure induced instabilities in laser interferometric detectors of gravitational waves 335

2. the mirrors are hanging in an equilibrium state with
the radiation pressure force balancing the restoring
force of the suspension.

Situation 1 represents a possible experiment. When the
servo-control is not operating, the mirrors will be freely in
motion. Then, when the laser is switched on, the radiation
pressure will affect the motion of the mirrors. However,
here, we mainly deal with the case (as given in 1), when
the mirrors are initially at rest and in the resonance posi-
tion. However, many of our analytical formulae, for exam-
ple, that of “time-delay” apply to more general situations.
Situation 2 describes the case when the interferometer is
already in operation. Now if the servo-control loop is sud-
denly opened, the system will tend to become unstable.
This case is also investigated.

The equations of motion for the mirrors correspond to
forced harmonic oscillator with the forcing term arising
from the radiation pressure force. We first compute the
radiation pressure forces on each mirror. For mirror M1,
the radiation pressure force comprises of two terms, elec-
tric field due the input laser beam, A and the intra-cavity
field B as shown in Figure 1. The radiation pressure force
on M1 is,

F1(t) = −2
c

[
R2P (t− τ)− r2

1P0

]
, (3)

where, P (t) = |B(t)|2, P0 = |A|2 and c is the speed of
light. r2

i is the fraction of average number of photons re-
flected by i th mirror for i = 1, 2 respectively.

For M2, the radiation pressure force is given by

F2

(
t− τ

2

)
=

2r2
2

c
P (t− τ). (4)

The equations of motion for the mirrors with the masses,
natural frequencies and damping constants, mi, ωi, τi; i =
1, 2, respectively, are

mi

[
ẍi +

2
τi
ẋi + ω2

i (xi − xi0)
]

= Fi(t), (5)

where xi0 is the initial position of the mirror such that the
separation between the mirrors before switching on the
laser is L0 = x20 − x10. The full system of equations to
be evolved in time are the equations from (1) to (5) (non-
linearly coupled equations). In Section 3, we first carry
out the task numerically and in later sections, after we
have gained sufficient physical insight into the problem,
we shall present the semi-analytical results.

3 The numerical solution

For the numerical calculation, we consider the VIRGO
parameters for the suspension and the optical cavity. We
assume m1 = m2 = m ' 28 kg, ω1 = ω2 = ω '
3.75 rad/s which corresponds to a resonant frequency of
about 0.6 Hz. The Q factor for the suspension is typ-
ically of the order of 106. The optical parameters are
τ ' 2 × 10−5 s, the wavelength of the carrier wave

λ ' 1.064 µm, r1 ' 0.94, r2 ' 1. The wave number is
k = 2π/λ and R ' 0.94. We examine the behaviour of the
system with the input power varying between 1 kW to
30 kW. Initial detectors will be operated at input powers
∼ 1 kW and advanced detectors at powers of few hun-
dred kW or even up to a MW. Note that these are the
input powers for the main cavities after power recycling
has been implemented.

With the above values for the parameters, we find that
the instabilities set in, on the time-scales of few seconds to
few hundred seconds. Since the Q-factor of the pendulum
suspension is so large, the damping in the oscillations can
be neglected for the numerical integrations carried over
the time intervals � Q/ω ∼ 106 seconds. Most of our nu-
merical integrations range from few seconds to at most few
thousands of seconds. Neglecting damping, the equations
of motion for the mirrors become,

ẍi + ω2(xi − xi0) =
Fi(t)
m

= fi(t), i = 1, 2. (6)

The equations of motion of the mirrors are non-linear dif-
ferential equations and cannot be solved by simple meth-
ods. We integrate the equations by the so-called “Phase
Space method” described below.

Let∆ be the time-step of integration. The natural time
step we assume is ∆ = τ . We assume that the forcing
term is a constant during each time step. This assump-
tion is not unrealistic because the round trip time interval
for the VIRGO cavity is of the order of 10−5 seconds;
note that this approximation will hold a fortiori for more
common (much shorter) cavities. The equations simplify
enormously under this assumption. Thus we can integrate
the equations exactly within this time interval.

The evolution of the equations goes as follows:

xn+1 = xn cosω∆+ pn sinω∆+
fn(1− cosω∆)

ω2
, (7)

pn+1 = −xn sinω∆+ pn cosω∆+
fn sinω∆

ω2
, (8)

where we have dropped the indices 1, 2 for simplicity and
p = ẋ/ω. Here, x represents the displacement from the
mean position x0. The index n represents the value of the
variable at the time n∆, i.e. for example, xn = x(n∆).
The optical component has the following iterative evolu-
tion:

f1n = −2[R2Pn−1 − r2
1P0]

mc
, (9)

f2n =
2r2

2Pn−1

mc
, (10)

Pn = |Bn|2, (11)
Bn = t1A exp(ikx1n) +RBn−1 exp(ikLn), (12)
Ln = 2x2n − x1n − x1,n−1. (13)

This scheme solves the system of equations. Since it is the
length of the cavity that actually matters for this problem,
we define the variable,

ψ(t) = k[x2(t)− x1(t)]− kL0, (14)
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and present the results in phase space plots of ψ̇/ω vs. ψ.
ψ(t) is called the differential mode.

We first consider the case when the mirrors are hang-
ing in the resonance position and the laser is switched on.
As the power builds up, the radiation pressure acts on the
mirrors, driving them apart resulting in the detuning of
the cavity. This reduces the radiation pressure force and
the mirrors swing back. The motion is oscillatory and as
we note, the oscillations increase in amplitude. We employ
two values of input power namely, 1 kW (initial VIRGO)
and 30 kW corresponding to advanced detectors. The re-
sults are presented by the phase space trajectories of the
mirrors. We consider four variables for the purpose, x1,
x2, ψ and φ. φ, defined later in the text in equation (24),
Section 4.2, is called the common mode. For the range of
powers considered 1 kW to 30 kW, the phase space curves
obtained from numerical simulations, for few tens of sec-
onds are qualitatively the same.

We make the following general observations about the
features.

1. We observe from Figures 4 and 5 that the radius of the
phase space curve increases with every cycle which in-
dicates that the mirrors continuously gain energy from
the input laser beam implying that the system is non-
conservative. We also observe that the gain per cycle is
not constant but some sort of a periodic function of the
radius of the phase space diagram. We shall consider
this phenomenon in detail in Section 5.

2. The (static) radiation pressure force peaks when the
cavity is in resonance and drops down to zero when
it is out of resonance, (see Fig. 3). The full width at
half maximum (FWHM) of the radiation pressure force
F (ψ) is about 0.06 rad, corresponding to the FWHM
of the cavity resonance curve for a finesse of 50. Hence,
for the initial stretch of the phase space trajectory, the
mirrors experience the radiation pressure force whereas
during the rest of the time, they only experience the
restoring force (and the force due to the input power
for M1). The phase-space trajectory is circular during
the restoring force regime and is deformed away from
the circularity when the mirrors encounter the appre-
ciable amount of radiation pressure near resonance (see
Fig. 4).

3. Since the laser is beamed in the positive x-direction,
there is an asymmetry about the origin. This shifts
the centre of mass trajectory to the positive side of
the x-axis (see Fig. 4). The period of oscillation of
the common mode is twice that of the period of the
differential mode of the system (see Fig. 2).

4. If we let the laser beam pump in energy for large
amounts of time, the amplitude also becomes large and
the mirrors sweep across several resonances. The phase
space trajectory then tends to become more and more
circular and the motion approximates to that of a sim-
ple harmonic motion. This feature can be observed in
all the four modes. The circularity of the trajectory
implies that the motion is almost “free”. The radia-
tion pressure force has little effect because the mirrors
sweep too quickly across the resonances for it to affect

their motion. However, as we shall see that the steady
gain in energy still persists. Figure 5 depicts this phe-
nomenon.

5. The amount of energy imparted to mirror 2 by the laser
beam after getting reflected, is more than to mirror 1.
Thus M2 swings with larger amplitude as compared to
M1 (see Fig. 4) (the radiation force is larger on M2).

6. Let’s turn now to the dynamics of a short cavity.
The Figure 6 shows the space of phase trajectory for
the differential mode ψ, for a short cavity of length
L0 = 30 cm (instead of 3 km for the other exam-
ples) and with the same optical and mechanical pa-
rameters and initial conditions as in Figure 5 obtained
with the 3 km long cavity. The round-trip time is here
τ ' 2 × 10−9 s, and the simulation lasts for 500 s
(corresponding to a huge number of round trips in
the cavity). At the contrary of the kilometric cavity
(see Fig. 5) no energy gain is found. This is in ac-
cord with the results of Meystre et al., who have pre-
viously developed a theory of radiation-pressure driven
cavities [12]. The physical reason for this difference of
behaviour between a short (common) cavity and a kilo-
metric one is precisely due to the difference of length,
as explained in the following sections. Time delay ef-
fects are thus of utmost importance for very long cav-
ities, while they can be neglected for usual ones (and
so have been neglected in Meystre’s theory [12]).

4 Phase space trajectories for the first cycle

In this section, we obtain approximate closed form expres-
sions for the equations of the phase space trajectories for
about a period of one cycle. For the VIRGO case, this
turns out to be between one or two seconds. This analysis
could be useful in the context of the initial locking of the
cavity.

4.1 The differential mode ψ

The equations of motion of the individual mirrors,
equations (3–5) allow us to write the equation of motion
of the system of mirrors in the differential mode as,

ψ̈ + ω2ψ =
k

m
[F2(t)− F1(t)]. (15)

In the quasi-static approximation,

P (t− τ) ' P (t) =
Pmax

1 + (2F/π)2 sin2 ψ
, (16)

where F = π
√
R/(1−R) is the finesse of the cavity and

Pmax =
t21P0

(1−R)2
· (17)

Thus the equation for ψ is,

ψ̈

ω2
+ (ψ + ψ0) =

F0

1 + (2F/π)2 sin2 ψ
, (18)
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Fig. 2. Motion of the mirrors for the modes kx1, kx2, ψ and φ as a function of time for input power of 1 kW.
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Fig. 6. Phase space diagram for ψ for the input power of
30 kW, integration time of 500 seconds and for a short cavity
(L0 = 30 cm). Unlike the long cavity, studied here, there is no
energy gain: the phase-space trajectory remains remarkably
stable.

where

F0 =
2k(r2

2 +R2)
mω2c

Pmax, (19)

and

ψ0 =
2kP0r

2
1

mω2c
· (20)

For the VIRGO cavity, we have the following numerical
values for the quantities:

ψ0 ' 0.88
P0

10 kW
, F ' 50 and F0 ' 62.6

P0

10 kW
·

For F � 1, the term on the right hand side of
equation (18) is non-zero only when ψ � 1. With the
approximation sinψ ∼ ψ, we can easily integrate equa-
tion (18) to get the phase space trajectory of the mirrors,

ψ̇2

ω2
+ (ψ + ψ0)2 =

F0π

F tan−1

(
2F
π
ψ

)
+ ψ2

0 . (21)

For low powers like 1 kW, the approximation sinψ ∼ ψ
works remarkably well and agrees with the numerically ob-
tained phase space trajectory. In order to compare the an-
alytical and numerical results, we compare the maximum
value of ψ, namely ψmax, of the trajectories for various
input powers in Figure 7.

1. When ψ is small that is near resonance, the equation
of the trajectory reduces to

ψ̇2

ω2
= 2F0ψ. (22)

Thus the trajectory is parabolic in shape and passes
through the origin.

Fig. 7. Comparison of the values of ψmax obtained analytically
(smooth curve) and numerically (open circles) for input powers
of 1 kW, 5 kW, 10 kW and 30 kW.
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Fig. 8. Phase space diagram for the ψ mode for the input
power of 50 kW and integration time of 3 seconds.

2. When ψ ∼ 1, the trajectory is a circle as expected
since there is hardly any radiation pressure force acting
on the mirrors. The equation of the trajectory in this
regime is

ψ̇2

ω2
+ (ψ + ψ0)2 =

F0π
2

2F + ψ2
0. (23)

When the input power is very large ∼ 50 kW, the tra-
jectory does not maintain this simple shape. For example,
when P0 = 50 kW, the trajectory is as shown in Figure 8.

This is because the high powers make the mirrors cross
several resonances in the first cycle itself and consequently
the trajectory has more complex behaviour. We do not
pursue this case here.

4.2 The common mode φ

In this sub-section, we study the motion of the center of
mass of the system of two mirrors. We define the center
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of mass coordinate of the two mirrors as,

φ = k(x1 − x10) + k(x2 − x20). (24)

The equation of motion of the system in the center of mass
coordinate is,

φ̈+ ω2φ =
k

m
[F1(t) + F2(t)], (25)

where for F1(t) and F2(t) are given by equations (3, 4).
The equation of motion takes the form,

φ̈

ω2
+ (φ− ψ0) =

Fc

1 + (2F/π)2 sin2 ψ
, (26)

where

Fc =
2k(r2

2 −R2)t21P0

mcω2(1−R)2
· (27)

For VIRGO parameters, Fc ' 4.0(P0/10 kW). The above
equation is a second order differential equation and is cou-
pled nontrivially to the ψ mode. The strategy we adopt
is to study the motion of the center of mass in differ-
ent regimes; (1) near the resonance and (2) away from the
resonance. The full trajectory is obtained by matching the
solution in the region of the overlap.

1. For 0 ≤ ψ ≤ 0.5; sinψ ∼ ψ, equation (26) becomes

φ̈

ω2
+ (φ− ψ0) =

Fc

1 + (2Fψ/π)2
· (28)

Further for ψ ≤ 3× 10−3, (2Fψ/π)2 � 1; we neglect
(2Fψ/π)2 as compared to 1 and obtain,

φ̇2

ω2
+ φ2 = 2(Fc + ψ0)φ. (29)

For the VIRGO cavity and input power 1 kW, Fc ∼
0.4. Neglecting the quadratic term in φ as compared
to the linear term, we see that the motion of the center
of mass describes a parabola for low values of ψ and φ,

φ̇2

ω2
' 0.97φ. (30)

We compare the slopes of the phase space diagrams
in the differential mode as well as the common mode.
The phase space curve is more steeper in the common
mode as compared to the differential mode.

2. Away from resonance, ψ ≥ 0.5, the power stored inside
the cavity is almost zero. The equation of motion of the
center of mass is given by,

φ̈+ φ = ψ0. (31)

The solution for the initial conditions φ = φ0, φ̇ =
φ̇0 is,

φ̇2

ω2
+ (φ− ψ0)2 =

φ̇2
0

ω2
+ (φ0 − ψ0)2. (32)

This solution must be matched to the solution in case 1.
Suppose we match the solution at φ0 = 0.5, from
equation (29) we have φ̇/ω ∼ 0.7. This gives the approxi-
mate solution. In general, the solution in this region is,

φ̇2

ω2
+ (φ− ψ0)2 = 2(Fc + ψ0)φ0 + (φ0 − ψ0)2 − φ2

0. (33)

The equations (29, 33) describe the full solution for this
mode.

The phase space trajectory for the individual mirrors
can be obtained from the motion of the mirrors in the
differential and the common modes. The trajectories of
the x1 and x2 modes are shown in Figures 2 and 4.

5 Energy considerations and anti-damping

In the previous section, we examined the motion of the
mirrors under the radiation pressure force. We noted that
each time when the mirrors cross a resonance they ex-
perience an impulsive force. In this section, we analyze in
detail as to how the system gains energy as each resonance
is encountered.

5.1 Quasi-static approximation

We start with the quasi-static approximation in which
the system is conservative, thus there is no net gain in
energy. We then phenomenologically introduce the “time
delay”, τlag which now leads to gain in energy. We thus ob-
tain τlag in terms of the cavity parameters and this gives
us an equation for an anti-damped harmonic oscillator.
The energy gain can be obtained as shown in the follow-
ing sections. Finally, for large times, the gain can be ex-
pressed through a negative Q of a harmonic oscillator. In
the quasi-static approximation, we assume that the mir-
rors are moving “slowly” that is the intra-cavity power
has time to adjust itself to the slowly changing positions
of mirrors, i.e. τψ̇ � 1 − R. Thus neglecting τ from the
equation of motion we obtain,

ψ̈

ω2
+ (ψ + ψ0) = Fs(ψ), (34)

where ψ0 as given in the previous section gives the con-
stant displacement due to the constant input power P0

from the laser beam and Fs(ψ) is the radiation pressure
force in the static case is given by,

Fs(ψ) =
F0

1 + (2F/π)2 sin2 ψ
, (35)

where F0 is given in equation (19). The dimensionless en-
ergy of the system is an integral of motion and is ob-
tained as

E =
1
2
ψ̇2

ω2
+ Vsus(ψ) + V0(ψ) + Vrad(ψ), (36)
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where the potentials are given by,

Vsus(ψ) =
1
2
ψ2, (37)

V0(ψ) = ψ0ψ, (38)

Vrad(ψ) = −
∫ ψ

0

Fs(ψ)dψ. (39)

The system is conservative in this approximation. These
results have been obtained in the earlier literature [14].

However, we note from the results of numerical simula-
tions that the system indeed gains energy with every cycle
of oscillation. Moreover, this gain occurs when the radi-
ation pressure force is appreciable i.e. when the system
is near resonance. Most importantly, we observe from the
numerical simulations that radiation pressure force lags
behind its quasi-static value by a “time-lag” which we
denote by τlag. We find that in the case of VIRGO, τlag

varies from about 16τ to 30τ as one climbs up the reso-
nance curve from half its maximum to the maximum. τlag

is of the order of the storage time of the cavity. With this
in mind we write the force F (t) ∼ Fs(t− τlag) and obtain
the following equation of motion,

ψ̈

ω2
+ (ψ + ψ0) = Fs(ψ(t− τlag)). (40)

Taylor expanding the forcing term to the first order we
obtain,

ψ̈

ω2
+ τlag

dFs

dψ
ψ̇ + (ψ + ψ0) = Fs(ψ), (41)

as the equation of motion for the system. The ψ̇ term in
equation (41) is responsible to the gain/loss of energy of
the system. This solely depends on the sign of dFs/dψ
since τlag is always positive. If we start the system from
resonance at ψ = 0, ψ starts increasing slowly and in
the region, dFs/dψ < 0 and the system experiences more
force than what it would have been in the quasi-static
case. This excess force is manifested in an excess amount
of energy ∆E. In general, the energy gained/lost over a
certain amount of time is given by,

∆E = −
∫ ψ2

ψ1

τlag(ψ)
dFs

dψ
ψ̇dψ = −

∫ t2

t1

τlag
dFs

dψ
ψ̇2dt.

(42)

It is clear from equation (42) that when dFs/dψ < 0,
the energy gain ∆E > 0 and vice versa. But since the
radiation pressure force always gives a kick in the positive
−ψ direction, the |ψ̇| is always larger when dFs/dψ < 0. In
other words, the amount of energy gained by the system
is more than the amount of energy lost. Hence, there is
always a net gain in energy when the system crosses a
resonance. We need to compute this extra force ∆F which
gives rise to the gain in the energy to the first order in τlag.
We obtain,

∆F = −dFs

dψ
ψ̇τlag. (43)

We note that ∆F depends on the phase velocity and
dFs/dψ. Since dFs/dψ ' 0 when the system is away from
resonance, ∆F comes into play only in the region of reso-
nance. Another way of describing the fundamental asym-
metry is to say that for the moving mirror, the wavelength
of the laser light is modified by the Doppler effect. When
the mirrors are approaching each other, the apparent fre-
quency of the light for the cavity is increased, or equiva-
lently, the line-width of the cavity seen from the labora-
tory frame is narrower and vice versa when the mirrors
move away from one another, the line-width is seen to be
broader. The consequence is that the braking force (when
the mirrors move against the light) acts for a shorter time
than the accelerating force, when the mirrors are moving
away from each other. Over one cycle the energy difference
is positive and there is a continuous increase of mechanical
energy which comes from the laser.

5.2 The computation of the time-delay

In this section, we obtain a closed form expression for the
“time-delay”, τlag under the approximation that the rela-
tive velocity of the mirrors does not change much during
the storage time of the cavity. This is observed in the nu-
merical simulations and hence the approximation may be
justified. τlag is the most important quantity for comput-
ing the rate of gain in energy. The intra-cavity radiation
field at nth time instant Bn is related to the intra-cavity
field at (n+ 1)th time instant via an iterative relation,

Bn+1 = t1A+R exp(2iψn)Bn, (44)

where, Bn = B(nτ), ψn = ψ(nτ). We compute the field
Bn from initial time t0, which we take to be zero. We
take the time step for the iteration to be the round trip
time τ . In order to compute the intra-cavity field, it is
necessary to know the temporal behaviour of ψ. For the
static case, when the mirrors are stationary, we get the
equilibrium field Bs. When the mirrors are moving,
the approximation now comes into play, namely, we assu-
me that ψ̇ is constant over the storage time of the cavity.

The Taylor expansion of ψk to the first order around
t = 0 is,

ψk = ψ0 + kτψ̇0, (45)

where ψ0 = ψ(t = 0). Iterating equation (44) n times
starting from t = 0 when B = B0, we obtain,

Bn = t1A
n−1∑
m=0

Rme2i
Pn−1
k=n−m ψk +Rne2i

Pn−1
k=0 ψkB0. (46)

For large n, the last term in equation (46) tends to zero
and the electric field amplitude at the nth iteration is
given by,

Bn = t1A
n−1∑
m=0

Rme2i
Pn−1
k=n−m ψk . (47)
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– If the relative separation between the mirrors is con-
stant in time, ψk = ψ0, we retrieve the equilibrium
field Bs:

Bs = t1A
∞∑
m=0

Rme2imψ0 =
t1A

1−Re2iψ0
· (48)

– Turning now to the case in hand, when ψk varies lin-
early with time, the sum in the exponential for large
n is approximately given by

n−1∑
k=n−m

ψk ∼ mψn −
1
2
m2τψ̇0. (49)

We combine equations (47, 49) to obtain,

Bn = t1A
n−1∑
m=0

Rme2imψne−im2τψ̇0 . (50)

If ψ̇ is small then the exponent can be linearized. Then
it is possible to express the field as the sum of the static
term Bs and the remaining part∆B which corresponds
to the time lag.
We write

Bn = Bs +∆B, (51)

where

∆B = −iτt1Aψ̇0

n−1∑
m=0

Rme2imψnm2. (52)

Summing the arithmetico-geometric series [17] yields,

∆B = −2it1Aτ
ψ̇R2e−4iψ

(1−Re−2iψ)3
· (53)

The corresponding power ∆P is given by

∆P = 2Re(Bn∆B∗n) ∼ 16t21|A|2τR2ψψ̇(1−R)
[(1−R)2 + 4Rψ2]3

·

(54)

Referring to equation (19), we get the expression for
the dimensionless extra force,

∆F =
2k(r2

2 +R2)
mω2c

∆P. (55)

The above expression of power is for values of ψ near
resonance when ψ � 1. When ψ ∼ nπ, the same ex-
pression can be replaced by the ψ − nπ under similar
approximations. The effective “time delay” τlag is now
obtained from (43, 54, 55)

τlag =
2τR

(1−R)(1 + (2F/π)2ψ2)
· (56)

We note from the equation (56) that the effective time
lag is maximum at the resonance and starts decreasing
as one goes away from the resonance value. For VIRGO
parameters, we compute the value of the τlag. At FWHM,
i.e. ψ ∼ 0.03, τlag ∼ 16τ , going up to τlag ∼ 30τ as one
approaches resonance.

5.3 Energy gain near the resonance at ψ = 0

In this section, we examine the motion of the mirrors for
small amplitudes. Initially before the laser is switched on,
the cavity is at resonance i.e. the two mirrors are separated
by an integral multiple of π in phase (kL0/π is an integer).
The system starts from ψ = 0 and the motion is allowed
to evolve with time. We restrict the amplitude to |ψ| ≤
π and study the system in this regime. Our goal is to
compute the net gain in energy, ∆Ecycle during one cycle
of oscillation. We have,

∆Ecycle = 2
∫ ψ1

0

∆F (ψ)dψ, (57)

where

∆F (ψ) =
16τR2F0ψψ̇

(1−R)3(1 + (2Fψ/π)2)3
· (58)

We note that dFs/dψ ≤ 0 in this regime. We set an ar-
bitrary cut-off ψ1 (when ∆F � 1) as the system moves
away from the resonance. The factor of two is because the
force is encountered twice during the cycle.

The ψ̇ is obtained from the energy balance equation,

1
2
ψ̇2

ω2
=
∫ ψ

0

Fs(ψ)dψ ∼ π

2F F0 tan−1

(
2Fψ
π

)
. (59)

Thus from (57, 58) we get,

∆Ecycle = 8ωτ

√
RF
π
F

3/2
0 I(φ1), (60)

where,

I(φ1) =
∫ φ1

0

φ(tan−1 φ)1/2

(1 + φ2)3
dφ, (61)

and φ1 = 2Fψ1/π. The cut-off φ1 should be away from the
resonance and we find for VIRGO, φ1 ∼ 5 is an acceptable
value.

The numerical and the analytical results are compared
in Figure 9 by plotting the gain in energy per cycle for
various input powers.

5.4 Energy gain for large amplitudes

As the mirrors gain energy, they swing with ever increas-
ing amplitude and sweep over several resonance peaks of
the Fabry-Perot cavity. The system gains energy at ev-
ery resonance peak and thus the energy gained per cycle
is the sum of the energy gained at each resonance en-
countered. The peaks are encountered at ψ = nπ, with
nmax ≥ n ≥ nmin, nmin < 0 and nmax > 0. The to-
tal number of resonances encountered by the mirrors is
nmax + |nmin| + 1. Also it is observed that nmax ≥ |nmin|
due to the built-in asymmetry arising due the laser power
pumped in the positive x-direction (see Fig. 3).
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Fig. 9. The gain in energy per cycle obtained analytically
(smooth curve) and numerically (open circles) for input powers
of 1 kW, 5 kW, 10 kW and 30 kW. To convert the dimensionless
energy gain in joules we multiply by the factor of mω2/k2 ∼
11.2 pico-joules.

Let ∆En be the energy gain at the nth resonance, then
the total energy gained per cycle ∆Ecycle is given by,

∆Ecycle =
nmax∑
nmin

∆En, (62)

where

∆En = ∆En+ +∆En−, (63)

and ∆En−, ∆En+ is the energy lost or gained respectively
and given by the following expressions,

∆En+ =
∫ nπ+ψ1

nπ

∆Fdψ > 0, (64)

∆En− =
∫ nπ

nπ−ψ1

∆Fdψ < 0. (65)

Combining equations (57, 58, 62–65) we get the energy
gain at nπ as,

∆En '
16τR2F0

(1−R)3
(ψ̇n+ − ψ̇n−)

∫ ψ1

0

ψ

(1 + (2Fψ/π)2)3
dψ,

(66)

where ψ̇n− and ψ̇n+ are the relative phase velocities of the
mirrors for ψ ≤ nπ and ψ ≥ nπ respectively. The energy
gained at different resonance positions of the mirrors is
different because the ψ̇ is different at different resonances,
ψ̇ is maximum when |n| is small and becomes small when
n approaches nmin or nmax. Thus the net energy gain per
cycle is

∆Ecycle '
τR2F0

(1−R)3

( π
F
)2

nmax∑
nmin

(ψ̇n+ − ψ̇n−). (67)

The next task is to compute the (ψ̇n+− ψ̇n−), the increase
in phase space velocity while crossing the resonance posi-
tion as a function of n. For large values of n, the radia-
tion pressure effect reduces remarkably as is observed in

Figure 3. Hence we take the static force equation to com-
pute the increase in the phase space velocities. We in-
tegrate equation (41) neglecting the anti-damping term
obtaining the change in kinetic energy as,

1
2ω2

(ψ̇2
n+ − ψ̇2

n−) = F0

∫ ∞
−∞

1
1 + (2F/π)2ψ2

dψ

− 2ψ1ψ0 − 2nπψ1. (68)

Equation (68) reduces to

(ψ̇n+ − ψ̇n−)
ω

=
π2F0/F − 4ψ1(ψ0 + nπ)

2ψ̇(nπ)/ω
, (69)

where we have approximated ψ̇n+ + ψ̇n− ' 2ψ̇(nπ).
To compute ψ̇(nπ)/ω analytically, we consider

the dimensionless instantaneous energy as given by
equation (36),

E =
1
2
ψ̇2

ω2
+

1
2

(ψ2 + 2ψψ0)− 2k(r2
2 +R2)t21P0

mω2c
J(ψ),

(70)

where

J(ψ) =
∫ ψ

0

dψ
(1−R)2 + 4R sin2 ψ

·

We can approximate the integral for large motions as
J(ψ) ∼ nπ/(1 − R2) ∼ ψ/(1 − R2) for n crossings of
the resonances. Assuming r2 = 1 and r1 = R, we have,

ψ̇2

ω2
+ (ψ − ψc)2 = (2E + ψ2

c ), (71)

where ψc = 2kP0/mω
2c ∼ P0/(10 kW) (for VIRGO pa-

rameters). The phase space trajectory is a circle centred
around ψc with radius

ρ =
√

2E + ψ2
c . (72)

Equation (71) gives ψ̇(nπ)/ω as

ψ̇(nπ)
ω

=
√
ρ2 − (nπ − ψc)2. (73)

We rewrite the gain in energy per cycle as,

∆Ecycle =
τR2F0ω

(1−R)3

( π
F
)2

S(nmax, nmin), (74)

where nmax is the greatest integer not greater than (ψc +
ρ)/π and nmin is the smallest integer not smaller than
(ψc − ρ)/π. We have,

S(nmax, nmin) =
nmax∑
n=nmin

g(nπ), (75)

where

g(nπ) =
π2F0/2F − 2ψ1(ψ0 + nπ)√

ρ2 − (nπ − ψc)2
· (76)
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Fig. 10. The dimensionless energy gain per cycle ∆Ecycle as
a function of the amplitude of the ψ mode for the input power
of 30 kW. The plot is analytical.

For large motion of the mirrors, since the mirrors cross
many resonances, we may replace the sum by an integral
over n. Changing over to the variable M = nπ − ψc, in
which the system appears more symmetric about the ori-
gin, we have,

S =
∫ Mmax

Mmin

α− βM
(ρ2 −M2)1/2

dM (77)

where α = πF0/2F − (2ψ1/π)(ψ0 + ψc) and β = 2ψ1/π.
Mmax andMmin correspond to nmax and nmin respectively.

We note that ρ satisfies the following inequalities,

Mmax ≤ ρ ≤Mmax + 1, |Mmin| ≤ ρ ≤ |Mmin|+ 1. (78)

We observe that when n is large, the difference between
|Mmin| and Mmax is small, of the order of 1 or 2 times π.
We denote the difference, by δM where,

δM = Mmax − |Mmin| = Mmax +Mmin. (79)

The integral in equation (77) splits into three parts S =
S1 − S2 − S3, where

S1 = 2α sin−1Mmax/ρ, (80)

S2 ' δM
2α

(ρ2 −M2
max)1/2

, (81)

S3 ' β
MmaxδM

(ρ2 −M2
max)1/2

· (82)

The dominant term is S1 which gives the general be-
haviour and shape of the curve shown in Figure 10. While
S2 produces a small kink in the curve, the effect of S3

can essentially be ignored. In case of the VIRGO cavity
and P0 = 30 kW and ρ ' 20, S1 ' 16.7, S2 ' 1.75 and
S3 ' 0.26. For the initial VIRGO detector, P0 = 1 kW,
and ρ ' 4.0, S1 ' 0.56 while S2, S3 ' 0.

Considering only S1, the energy gain per cycle is ap-
proximately given by,

∆Ecycle =
2∆Emax

π
sin−1 Mmax

ρ
,

Mmax ≤ ρ ≤Mmax + 1, (83)

where,

∆Emax =
τR2F0ωπ

3

(1−R)3F2

(
πF0

2F −
2ψ1

π
(ψ0 + ψc)

)
. (84)

We observe the following features in the profile of ∆Ecycle:

– at the resonance position, ρ = Mmax the energy gain is
maximum and equal to ∆Emax. For the VIRGO cavity
specifications and input power of 30 kW,∆Emax ' 3.8.
When P0 = 1 kW, ∆Emax ' 4.2× 10−2;

– equation (83) shows that the energy gain per cycle is
a decreasing function of ρ. The energy gain decreases
till the next resonance is crossed, where it suddenly
increases to ∆Emax. As the amplitude increases, ρ in-
creases from Mmax to Mmax + 1, the mirrors sweep
across the resonances a little faster which deprives
them from gaining the full energy ∆Emax. ∆Ecycle

therefore reduces from ∆Emax to ∆Emin, where

∆Emin =
2∆Emax

π
sin−1 Mmax

Mmax + 1
; (85)

– the energy profile in this range of ρ i.e. Mmax to
Mmax + 1 can be approximately given by,

(∆Emax −∆Ecycle)2 =
8(∆Emax)2

π2Mmax
(ρ−Mmax). (86)

We note that the minimum value is,

∆Emin ∼ ∆Emax

(
1−

(
8

π2Mmax

)1/2
)
, (87)

and it tends to the maximum value ∆Emax as Mmax

becomes very large;
– in Figure 10, it is seen that there is a kink after ∆Emin

is reached. The kink occurs because Mmin reduces by
1 when the mirrors cross yet another resonance on the
negative side. This is accounted for by the second term.

Since E ∼ ρ2, the rate of increase of ρ per cycle, de-
noted by ∆ρ, is given by ∆ρ = ∆E/ρ.

5.5 The negative Q-factor

In the previous section, we have seen that for large val-
ues of ρ, the amount of energy gained by the system of
two mirrors per cycle is a constant and tends to ∆Emax.
The system is an anti-damped harmonic oscillator which
gains on an average, constant amount of energy per cy-
cle. We may therefore associate a negative quality factor
−Q, where Q > 0, with the system which describes the
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anti-damping. In this section, we endeavor to study the
behaviour of Q.

The equation of motion of an anti-damped harmonic
oscillator is given by,

χ̈

ω2
− χ̇

ωQ
+ χ = 0, (88)

where Q is constant. The solution for χ is of the form

χ ∼ χ0eωt/2Qe±iωt. (89)

where χ = ψ − ψc. The amplitude is ρ ∼ χ0eωt/2Q when
ρ is sufficiently large so that the phase space trajectory is
approximately circular and can be compared to a simple
harmonic oscillator. Since a constant amount of energy is
gained per cycle, theQ will be a function of time. However,
we can still describe the system by an averageQ taken over
a cycle, which we denote by 〈Q〉cycle, since the change in
Q during one cycle is small. Moreover, we assume

1
ω〈Q〉cycle

d〈Q〉cycle

dt
� 1

i.e. the fractional variation of 〈Q〉cycle over a period of a
cycle can be ignored. Thus we obtain a W.K.B. solution
for ρ(t) as,

ρ(t) = ρ(t0) exp
[

1
2

∫ t

t0

ωdt
〈Q〉cycle

]
, (90)

where t0 is some fixed but arbitrary initial time instant
and ρ(t0) is the radius of the circular phase-space trajec-
tory at t0. We have also assumed that 〈Q〉cycle � 1. From
equations (72, 90) the energy of the harmonic oscillator is
given by,

E(t)−E(t0) =
1
2
ρ2(t0)

[
exp

(∫ t

t0

ωdt
〈Q〉cycle

)
− 1
]
. (91)

Since the energy gain is a constant and during a cycle
equal to ∆Emax, we can equate (2π/ω)(dE/dt) to ∆Emax

to obtain,

E(t)−E(t0) =
ω∆Emax

2π
(t− t0). (92)

The time evolution of ρ is obtained, which yields,

ρ(t) = ρ(t0)
[
1 +

∆Emax

πρ2
0

ω(t− t0)
]1/2

. (93)

Equating the logarithmic derivatives of (90, 93) we obtain,

〈Q〉cycle(t) = 〈Q〉cycle(t0) + ω(t− t0), (94)

where 〈Q〉cycle(t0) = πρ2(t0)/∆Emax. We observe that
both the energy and the 〈Q〉cycle increase linearly with
time while the amplitude ρ increases as t1/2. 〈Q〉cycle(t)
depends through ∆Emax on the input power, finesse and
the round trip time.

For P0 = 30 kW of input power, the trajectory more
or less obtains a circular shape when ρ(t0) ∼ 15. For the
VIRGO parameters,

∆Emax ∼ 0.42
(

P0

10 kW

)2

∼ 3.79. (95)

Thus 〈Q〉cycle(t0) ∼ 186 and so

〈Q〉cycle(t) ∼ 186 + ω(t− t0). (96)

Further, if we also consider the effect of the damping of
the suspension then the limit cycle will be approached
when 〈Q〉cycle ∼ Qsus ∼ 106 for VIRGO. 〈Q〉cycle will
attain this value after ωt ∼ 106 which corresponds to
little more than 3 days. The corresponding amplitude is
given by,

ρ = ρ(t0)
[
1 +

ω(t− t0)
〈Q〉cycle(t0)

]1/2

∼ 1100. (97)

This simple analysis will have to be modified when the
limit cycle is almost reached, that is when, 〈Q〉cycle ∼
Qsus. Here, however our goal was to estimate the time it
takes to reach this stage. The above analysis is then ade-
quate for the purpose. However, when the servo operates
or otherwise such a situation is unlikely to arise because
other effects such as mirror tilting etc. will be important
long before and then the dynamics will be completely dif-
ferent.

6 The equilibrium case

Lastly, we examine the case when the mirrors are in
equilibrium under the radiation pressure force and the
restoring force. We have to determine whether the equi-
librium is stable or unstable. To this end, we perturb the
equation (41) about a given equilibrium point. Writing
ψ = ψeq + δψ and linearizing, we get,

δψ̈ − 2
τeq

δψ̇ +Ω2δψ = 0, (98)

where,

τeq = −
( π

2F
)3 (1 + (2Fψeq/π)2)3

F0ψeqτ
√
R

, (99)

and

Ω2
eq = 2

(
2F
π

)2
ψeqF0

(1 + (2Fψeq/π)2)2
· (100)

If ψeq ≤ 0, Ω2
eq ≤ 0, the sign of τeq does not matter and

the instability grows exponentially. If on the other hand
ψeq > 0, then although Ω2

eq > 0, τeq > 0 and this leads
to gradually growing oscillations until the pendulum tips
over the maximum. We plot the phase space trajectory for
the input power of 1 kW in Figure 11. We conclude from
this that the cavity is always unstable when radiation
pressure forces act. The time-delay plays a crucial role in
making the system unstable. The negative Q-factor for
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Fig. 11. The phase space diagram for the equilibrium case for
the ψ mode. The input power is 1 kW and the integration time
is 4 seconds.

the motion of the mirrors near the equilibrium position,
is given by,

Q = −1
2
Ωeqτeq. (101)

For an input power of 30 kW, with VIRGO cavity pa-
rameters, the equilibrium position of the mirrors near
the resonance at zero is ψeq ' 0.25. The correspond-
ing values of the other quantities are Ωeq ' 4.75 and
τeq ' 104 seconds. The negative Q-factor, Q ' −2.3×104.
Whereas for initial VIRGO, P0 ' 1 kW, ψeq ' 0.16 thus
Ωeq ' 1.67, τeq ' 3.1×104 seconds, the negative Q-factor,
Q ' −2.6× 104.

7 Conclusion

We have analysed the effect of radiation pressure on the
freely hanging mirrors (no servo loop) suspended in the
laser interferometric optical cavities. After numerically
evolving the full set of equations of motion with respect to
time, we find that the amplitude of the mirror oscillations
continuously increases as time progresses. We introduce
the “time delay”, that is the time taken for field to ad-
just to the motion of the mirrors, in a phenomenological
way to explain the observed gain. We conclude that the
gain in energy is due to the differential radiation pressure
force arising from the asymmetry depending upon the mo-
tion of the mirrors. From another viewpoint, we can also
explain the gain in energy qualitatively by the Doppler
effect. With respect to the mirror, the frequency of the
incoming laser beam is higher as compared to that of the
outgoing laser beam due to the Doppler effect. The deficit
of the energy of the laser beam after getting reflected from
the mirror can be looked upon as the energy gained by the
mirrors. The values of the energy gain per cycle are com-
puted analytically under the reasonable assumption that
the mirrors are not accelerated within the time scale of
the storage time of the cavity. For VIRGO parameters,
the analytical values agree remarkably with the numerical

values. The interesting point to note is that the motion of
the mirrors approaches that of an anti-damped harmonic
oscillator with a constant gain in energy as time progresses
which implies that the mirrors move too quickly to get
affected by the radiation pressure force. The negative Q-
factor of the anti-damped oscillator depends on the input
power, the finesse and the round trip time of the cavity
and increases linearly as a function of time. The analy-
sis will have to be modified when the negative Q-factor
becomes of the order of the damping Q-factor of the sus-
pension fibre, if such a case can arise.

In this paper, we have shown that the radiation pres-
sure force makes the freely hanging mirror unstable for
all values of the input power and irrespective of the initial
conditions.

The above analysis is relevant in the event, when the
interferometer is in operation and if the servo loop is sud-
denly opened. Then the motion of the hanging mirrors can
be deduced from the above analysis. This analysis will be
helpful in designing a servo-control which can prevent this
instability. In a previous work [11], the servo-control was
included in the linear regime of the Fabry-Perot curve as-
suming the transfer function for the servo given by Caron
et al. [18]. Their work sets the stage for analysing the sys-
tem in the non-linear regime as well, but it is then needed
to know how servo-control operates in the full regime.
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